当前位置: 首页 > 学术报告
青年学术论坛 - 代数几何和数论分论坛
Endo-parameters for p-adic classical groups
Daniel Skodlerack 副教授(上海科技大学)
2021年3月31日14:00-15:00  闵行统计楼103室

*主持人:谢兵永 副教授

Let G be a quasi-split form of a symplectic, unitary or orthogonal group defined over a non-archimedean local field of odd residue characteristic.

Every smooth irreducible representation of a p-adic classical group G contains a semisimple character, a certain arithmetic character which is suitable for the study and handling of the category for smooth representations of G. (These characters were introduced by Bushnell--Kutzko and Stevens) Two of those characters contained in the same irreducible representation intertwine.

In the flavor of Bushnell--Henniart (local tame lifting) we generalize the notion of Endo--equivalence from simple characters to semisimple characters and parametrize intertwining classes of semisimple characters for G using new developed parameters, the so-called endo-parameters.

Daniel Skodlerack现为上海科技大学副教授,曾在Münster大学、帝国理工大学、柏林洪堡大学等工作。他的研究领域为局部朗兰兹纲领。2020年,Skodlerack与他的合作者解决了朗兰兹纲领中的一个重要问题。该成果发表在9月21日出版的Inventiones Mathematicae(数学新进展)上。该期刊与Annals of Mathematics(数学年刊)、Journal of the American Mathematical Society(美国数学会杂志)和 Acta Mathematica(数学学报)并称世界四大顶级数学期刊。