pg电子游戏网址

当前位置: 首页 > 学术报告
学术报告 - 方程方向
Singular solutions for a second-order traffic flow model derived from a nonlinear Vlasov type kinetic model
沈春 教授(鲁东大学)
2021年3月26日周五13:30-14:30  腾讯会议

*时间:2021年3月26日周五13:30-14:30
*地点:腾讯会议ID:928 821 274 链接:https://meeting.tencent.com/s/AGFZ4MYVMV3c
*主讲人:沈春 教授(鲁东大学)
*主持人:袁海荣 教授

*讲座内容简介:
The constructions of Riemann solutions for a second-order traffic flow model derived from a nonlinear Vlasov type kinetic model are displayed in fully explicit forms. In particular, a composite hyperbolic wave is obtained in the Riemann solution under the suitable initial condition, in which a delta contact discontinuity is attached on the wave-front of a rarefaction wave. Furthermore, the asymptotic behaviors of Riemann solutions are analyzed carefully as the parameter tends to zero. It is shown that the formation of delta shock wave is derived from the composite hyperbolic wave solution as well as the formation of vacuum state is deduced from the solution consisting of a 1-shock wave and a 2-contact discontinuity, which shows completely different behaviors in the current literature.

*主讲人简介:
  沈春,2006年获得上海大学博士学位,长期从事双曲守恒律方程奇异测度解的理论分析和计算研究,是国内在该领域很有影响力的专家。现任鲁东大学数学与统计学院教授。